General Information of Protein (ID: PRT01015)
Name Ribosomal protein S6 kinase beta-1 (S6K1)
Synonyms   Click to Show/Hide Synonyms of This Protein
S6K-beta-1; S6K1; 70 kDa ribosomal protein S6 kinase 1; P70S6K1; p70-S6K 1; Ribosomal protein S6 kinase I; p70 ribosomal S6 kinase alpha; p70 S6 kinase alpha; p70 S6K-alpha; p70 S6KA; Rps6kb1
Gene Name Rps6kb1 Gene ID
83840
UniProt ID
P67999
Family Transferases (EC 2)
EC Number   EC: 2.7.11.1  (Click to Show/Hide the Complete EC Tree)
Transferase
Kinase
Protein-serine/threonine kinases
EC: 2.7.11.1
  Click to Show/Hide the Molecular/Functional Data (Sequence/Structure/Function) of This Protein
Sequence
MRRRRRRDGFYPAPDFRHREAEDMAGVFDIDLDQPEDAGSEDELEEGGQLNESMDHGGVG
PYELGMEHCEKFEISETSVNRGPEKIRPECFELLRVLGKGGYGKVFQVRKVTGANTGKIF
AMKVLKKAMIVRNAKDTAHTKAERNILEEVKHPFIVDLIYAFQTGGKLYLILEYLSGGEL
FMQLEREGIFMEDTACFYLAEISMALGHLHQKGIIYRDLKPENIMLNHQGHVKLTDFGLC
KESIHDGTVTHTFCGTIEYMAPEILMRSGHNRAVDWWSLGALMYDMLTGAPPFTGENRKK
TIDKILKCKLNLPPYLTQEARDLLKKLLKRNAASRLGAGPGDAGEVQAHPFFRHINWEEL
LARKVEPPFKPLLQSEEDVSQFDSKFTRQTPVDSPDDSTLSESANQVFLGFTYVAPSVLE
SVKEKFSFEPKIRSPRRFIGSPRTPVSPVKFSPGDFWGRGASASTANPQTPVEYPMETSG
IEQMDVTTSGEASAPLPIRQPNSGPYKKQAFPMISKRPEHLRMNL
Function Serine/threonine-protein kinase that acts downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression. Regulates protein synthesis through phosphorylation of EIF4B, RPS6 and EEF2K, and contributes to cell survival by repressing the pro-apoptotic function of BAD. Under conditions of nutrient depletion, the inactive form associates with the EIF3 translation initiation complex. Upon mitogenic stimulation, phosphorylation by the mammalian target of rapamycin complex 1 (mTORC1) leads to dissociation from the EIF3 complex and activation. The active form then phosphorylates and activates several substrates in the pre-initiation complex, including the EIF2B complex and the cap-binding complex component EIF4B. Also controls translation initiation by phosphorylating a negative regulator of EIF4A, PDCD4, targeting it for ubiquitination and subsequent proteolysis. Promotes initiation of the pioneer round of protein synthesis by phosphorylating POLDIP3/SKAR. In response to IGF1, activates translation elongation by phosphorylating EEF2 kinase (EEF2K), which leads to its inhibition and thus activation of EEF2. Also plays a role in feedback regulation of mTORC2 by mTORC1 by phosphorylating RICTOR, resulting in the inhibition of mTORC2 and AKT1 signaling. Mediates cell survival by phosphorylating the pro-apoptotic protein BAD and suppressing its pro-apoptotic function. Phosphorylates mitochondrial RMP leading to dissociation of a RMP:PPP1CC complex. The free mitochondrial PPP1CC can then dephosphorylate RPS6KB1 at Thr-412, which is proposed to be a negative feedback mechanism for the RPS6KB1 anti-apoptotic function. Mediates TNF-alpha-induced insulin resistance by phosphorylating IRS1 at multiple serine residues, resulting in accelerated degradation of IRS1. In cells lacking functional TSC1-2 complex, constitutively phosphorylates and inhibits GSK3B. May be involved in cytoskeletal rearrangement through binding to neurabin. Phosphorylates and activates the pyrimidine biosynthesis enzyme CAD, downstream of MTOR. Following activation by mTORC1, phosphorylates EPRS and thereby plays a key role in fatty acid uptake by adipocytes and also most probably in interferon-gamma-induced translation inhibition.
Regulatory Network
Full List of Metabolite(s) Regulating This Protein
      Organic acids and derivatives
            Leucine Click to Show/Hide the Full List of Regulating Pair(s):   1 Pair(s)
               Detailed Information Metabo  Info click to show the details of this metabolite
               Regulating Pair Experim Info click to show the details of experiment for validating this pair [1]
                      Introduced Variation Leucine addition (288 hours)
                      Induced Change RPS6KB1 protein phosphorylation levels: increase (FC = pS6K1)
                      Summary Introduced Variation         Induced Change 
                      Disease Status Healthy individual
                      Details It is reported that leucine addition causes the increase of RPS6KB1 protein phosphorylation compared with control group.
References
1 Leucine in food mediates some of the postprandial rise in plasma leptin concentrations. Am J Physiol Endocrinol Metab. 2006 Sep;291(3):E621-30.

If you find any error in data or bug in web service, please kindly report it to Dr. Zhang and Dr. Mou.