General Information of Protein (ID: PRT00896)
Name Heat shock protein 90 alpha (HSP90A)
Synonyms   Click to Show/Hide Synonyms of This Protein
Heat shock 86 kDa; HSP 86; HSP86; Lipopolysaccharide-associated protein 2; LAP-2; LPS-associated protein 2; Renal carcinoma antigen NY-REN-38; HSP90AA1; HSP90A; HSPC1; HSPCA
Gene Name HSP90AA1 Gene ID
3320
UniProt ID
P07900
Family Hydrolases (EC 3)
EC Number   EC: 3.6.4.10  (Click to Show/Hide the Complete EC Tree)
Hydrolases
Acid anhydride hydrolase
Cellular and subcellular movement acid anhydride hydrolase
EC: 3.6.4.10
  Click to Show/Hide the Molecular/Functional Data (Sequence/Structure/Function) of This Protein
Sequence
MPEETQTQDQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIR
YESLTDPSKLDSGKELHINLIPNKQDRTLTIVDTGIGMTKADLINNLGTIAKSGTKAFME
ALQAGADISMIGQFGVGFYSAYLVAEKVTVITKHNDDEQYAWESSAGGSFTVRTDTGEPM
GRGTKVILHLKEDQTEYLEERRIKEIVKKHSQFIGYPITLFVEKERDKEVSDDEAEEKED
KEEEKEKEEKESEDKPEIEDVGSDEEEEKKDGDKKKKKKIKEKYIDQEELNKTKPIWTRN
PDDITNEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFVPRRAPFDLFENRKKKNN
IKLYVRRVFIMDNCEELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNLVKKC
LELFTELAEDKENYKKFYEQFSKNIKLGIHEDSQNRKKLSELLRYYTSASGDEMVSLKDY
CTRMKENQKHIYYITGETKDQVANSAFVERLRKHGLEVIYMIEPIDEYCVQQLKEFEGKT
LVSVTKEGLELPEDEEEKKKQEEKKTKFENLCKIMKDILEKKVEKVVVSNRLVTSPCCIV
TSTYGWTANMERIMKAQALRDNSTMGYMAAKKHLEINPDHSIIETLRQKAEADKNDKSVK
DLVILLYETALLSSGFSLEDPQTHANRIYRMIKLGLGIDEDDPTADDTSAAVTEEMPPLE
GDDDTSRMEEVD
Structure
1BYQ ; 1OSF ; 1UY6 ; 1UY7 ; 1UY8 ; 1UY9 ; 1UYC ; 1UYD ; 1UYE ; 1UYF ; 1UYG ; 1UYH ; 1UYI ; 1UYK ; 1UYL ; 1YC1 ; 1YC3 ; 1YC4 ; 1YER ; 1YES ; 1YET ; 2BSM ; 2BT0 ; 2BUG ; 2BYH ; 2BYI ; 2BZ5 ; 2C2L ; 2CCS ; 2CCT ; 2CCU ; 2FWY ; 2FWZ ; 2H55 ; 2JJC ; 2K5B ; 2QF6 ; 2QFO ; 2QG0 ; 2QG2 ; 2UWD ; 2VCI ; 2VCJ ; 2WI1 ; 2WI2 ; 2WI3 ; 2WI4 ; 2WI5 ; 2WI6 ; 2WI7 ; 2XAB ; 2XDK ; 2XDL ; 2XDS ; 2XDU ; 2XDX ; 2XHR ; 2XHT ; 2XHX ; 2XJG ; 2XJJ ; 2XJX ; 2XK2 ; 2YE2 ; 2YE3 ; 2YE4 ; 2YE5 ; 2YE6 ; 2YE7 ; 2YE8 ; 2YE9 ; 2YEA ; 2YEB ; 2YEC ; 2YED ; 2YEE ; 2YEF ; 2YEG ; 2YEH ; 2YEI ; 2YEJ ; 2YI0 ; 2YI5 ; 2YI6 ; 2YI7 ; 2YJW ; 2YJX ; 2YK2 ; 2YK9 ; 2YKB ; 2YKC ; 2YKE ; 2YKI ; 2YKJ ; 3B24 ; 3B25 ; 3B26 ; 3B27 ; 3B28 ; 3BM9 ; 3BMY ; 3D0B ; 3EKO ; 3EKR ; 3FT5 ; 3FT8 ; 3HEK ; 3HHU ; 3HYY ; 3HYZ ; 3HZ1 ; 3HZ5 ; 3INW ; 3INX ; 3K97 ; 3K98 ; 3K99 ; 3MNR ; 3O0I ; 3OW6 ; 3OWB ; 3OWD ; 3Q6M ; 3Q6N ; 3QDD ; 3QTF ; 3R4M ; 3R4N ; 3R4O ; 3R4P ; 3R91 ; 3R92 ; 3RKZ ; 3RLP ; 3RLQ ; 3RLR ; 3T0H ; 3T0Z ; 3T10 ; 3T1K ; 3T2S ; 3TUH ; 3VHA ; 3VHC ; 3VHD ; 3WHA ; 3WQ9 ; 4AIF ; 4AWO ; 4AWP ; 4AWQ ; 4B7P ; 4BQG ; 4BQJ ; 4CGQ ; 4CGU ; 4CGV ; 4CGW ; 4CWF ; 4CWN ; 4CWO ; 4CWP ; 4CWQ ; 4CWR ; 4CWS ; 4CWT ; 4EEH ; 4EFT ; 4EFU ; 4EGH ; 4EGI ; 4EGK ; 4FCP ; 4FCQ ; 4FCR ; 4HY6 ; 4JQL ; 4L8Z ; 4L90 ; 4L91 ; 4L93 ; 4L94 ; 4LWE ; 4LWF ; 4LWG ; 4LWH ; 4LWI ; 4NH7 ; 4NH8 ; 4O04 ; 4O05 ; 4O07 ; 4O09 ; 4O0B ; 4R3M ; 4U93 ; 4W7T ; 4XIP ; 4XIQ ; 4XIR ; 4XIT ; 4YKQ ; 4YKR ; 4YKT ; 4YKU ; 4YKW ; 4YKX ; 4YKY ; 4YKZ ; 5CF0 ; 5FNC ; 5FND ; 5FNF ; 5GGZ ; 5J20 ; 5J27 ; 5J2V ; 5J2X ; 5J64 ; 5J6L ; 5J6M ; 5J6N ; 5J80 ; 5J82 ; 5J86 ; 5J8M ; 5J8U ; 5J9X ; 5LNY ; 5LNZ ; 5LO0 ; 5LO1 ; 5LO5 ; 5LO6 ; 5LQ9 ; 5LR1 ; 5LR7 ; 5LRL ; 5LRZ ; 5LS1 ; 5M4E ; 5M4H ; 5NYH ; 5NYI ; 5OCI ; 5OD7 ; 5ODX ; 5T21 ; 5VYY ; 5XQD ; 5XQE ; 5XR5 ; 5XR9 ; 5XRB ; 5XRD ; 5XRE ; 5ZR3 ; 6B99 ; 6B9A ; 6CEO ; 6CYG ; 6CYH ; 6EI5 ; 6EL5 ; 6ELN ; 6ELO ; 6ELP ; 6EY8 ; 6EY9 ; 6EYA ; 6EYB ; 6F1N ; 6FCJ ; 6FDP ; 6GP4 ; 6GP8 ; 6GPF ; 6GPH ; 6GPO ; 6GPP ; 6GPR ; 6GPT ; 6GPW ; 6GPY ; 6GQ6 ; 6GQR ; 6GQS ; 6GQU ; 6GR1 ; 6GR3 ; 6GR4 ; 6GR5 ; 6HHR ; 6KSQ ; 6LR9 ; 6N8X ; 6OLX ; 6TN4 ; 6TN5 ; 6U98 ; 6U99 ; 6U9A ; 6U9B
Function Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle. Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70. Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes. Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation. Mediates the association of TOMM70 with IRF3 or TBK1 in mitochodria outer membrane which promotes host antiviral response.
Regulatory Network
Full List of Metabolite(s) Regulating This Protein
      Organic acids and derivatives
            Oxoglutaric acid Click to Show/Hide the Full List of Regulating Pair(s):   1 Pair(s)
               Detailed Information Metabo  Info click to show the details of this metabolite
               Regulating Pair Experim Info click to show the details of experiment for validating this pair [1]
                      Introduced Variation Oxoglutaric acid addition (336 hours)
                      Induced Change HSP90AA1 protein expression levels: increase
                      Summary Introduced Variation         Induced Change 
                      Disease Status Parkinsonism [ICD-11: 8A00]
                      Details It is reported that oxoglutaric acid addition causes the increase of HSP90AA1 protein expression compared with control group.
References
1 Dietary keto-acid feed-back on pituitary activity in gilthead sea bream: effects of oral doses of AKG. A proteomic approach. Gen Comp Endocrinol. 2010 Dec 1;169(3):284-92.

If you find any error in data or bug in web service, please kindly report it to Dr. Zhang and Dr. Mou.